

Charcoal data as paleoenvironmental proxies

Julie Aleman

Yale University

Charcoal data

Charcoal data

Regional charcoal

- Charcoal transported and preserved in natural archives
 - Sediments: lacustrine, marine, fluvial, in bog
 - Soils, paleosoils

- Long-term reconstructions of fire history
 - Complement and extend reconstructions from dendrochronological and historical records

Take cores at the center of the lake.

1. A coring platform (or ice)

2. Sampling the water-sediment interface

Kajak – Brinkhurst corer

2. Sampling the water-sediment interface

Kajak – Brinkhurst corer

2. Taking deep sediments

Russian corer

2. Taking deep sediments

Livingstone corer

Sediment dating

• For recent sediments < 200 years \rightarrow ²¹⁰Pb

dating

- bulk

Sediment dating

- For recent sediments < 200 years → ²¹⁰Pb dating
 - bulk

- For > 200 years \rightarrow ¹⁴C dating
 - Charcoal, macroremains, bulk
 - Radiocarbon years are then converted to calendar years

 Sufficient chronological controls (= number of dates per paleosequence)

Age-depth models

²¹⁰Pb age-depth model

Sediment accumulation rate

Computation of charcoal accumulation rate (CHAR)

Age-depth models

Clam R package, M. Blaauw

Charcoal typology

Charcoal production

			combustion continuum		
	uncharred biomass	slightly charred biomass	charcoal	soot and graphitic black carbon	effilgsng
		combustion residues condensates			
properties, characteristics or parameters		typical value, range of values, and/or trend (shaded area)			
size		mm and larger	cm to micron	micron to submicron	
formation temperature		<300 °C	200-600 °C	>500 °C	

Charcoal typology

- Microcharcoal (< 100 μm)
 - Pollen-slide
 - Regional origin (windborne, > 20km)

Landcare Research

Charcoal typology

- Macrocharcoal (> 100 μm)
 - Sieved (contiguously)
 - Local to extra-local origin

Whitlock and Larsen, 2001.

Reflects fuel type

• Refleaces

Poaceae roots

Other leaves

Needles and wood

Reflects fuel type: example in the tropics

Morphology Width-to-length ratio (W/L)

W/L < 0.5 → grassy fuel type

W/L > $0.5 \rightarrow$ woody fuel type

W/L < 0.5
Savanna burning

→ Grass fuel type

Before 1980: W/L > 0.5 After 1980: W/L < 0.5

→ Deforestation

Before 1980: W/L > 0.5 After 1980: W/L < 0.5

→ Deforestation

CHAR time series

- 2 components:
 - Background (slowly varying trend)
 - Peaks -> Noise and Fire

CHAR time series

- Reconstructing fire events

 fire frequency
- Parameterization of the procedures

 Need for calibration

Calibration work

- Background component -> multiple sources (firerelated processes, redeposition...)?
 - Disentangling them to improve fire history reconstruction (identification of peaks)

Northwestern USA

Similarity in trends of **BCHAR** and **woody pollen taxa**

-> background charcoal influx is a function of fuel characteristics, which in turned is governed by climate and vegetation

Calibration work

 Fire events: comparing dendrochronological fire history reconstruction to CHAR in lake sediments

Charcoal data

- Reconstructing long-term fire history
 - One site
 - Potential at large spatial scale

Thank you for your attention!